
Request For Comment on Draft Specification
for The CXING Programming Language.
Greetings all. This is a proposed draft of a proposed new programming language. The BDFL of this
project is DannyNiu/NJF. The intention of this request for comments is to solicit ideas - advice,
suggestions for improvement, as well as critique on preceived defects.

1

While any idea are welcome, they're better received if they're accompanied with counter-arguments, usage
illustrations, and/or sketch of implementation, yet the decision of adoption is ultimately made by the
BDFL of the project.

2

You may submit your idea and/or queries by opening Issues at GitHub or Gitee, both English and Chinese
languages are accepted.

3

Request For Comment on Draft Specification for The CXING Programming Language. 1

This page is intentionally left blank.

2 Request For Comment on Draft Specification for The CXING Programming Language.

Request For Comment on Draft Specification for The CXING Programming Language. 3

Table of Contents

1. Introduction 7

2. Lexical Elements. 11

3. Expressions 13

3.1. Grouping, Postifix, and Unaries. 13

3.2. Arithmetic Binary Operations 14

3.3. Bit Shifting Operations 15

3.4. Arithmetic Relations 16

3.5. Bitwise Operations 16

3.6. Boolean Logics 17

3.7. Compounds 17

4. Phrases 18

5. Statements 19

5.1. Condition Statements 19

5.2. Loops 20

5.3. Statements List 20

5.4. Declarations 21

6. Functions 21

7. Translation Unit Interface 22

7.1. Translation Unit Source Code Syntax 22

7.2. Source Code Inclusion 23

8. Language Semantics 23

8.1. Objects and Values 23

8.2. Object/Value Key Access 24

8.3. Subroutines and Methods 25

9. Types and Special Values 26

10. Type Definition and Object Initialization Syntax 27

11. Numerics and Maths 30

11.1. Rounding 30

11.2. Exceptional Conditions 30

11.3. Reproducibility and Robustness 31

11.4. Recommended Applications of Floating Points 32

12. Runtime Semantics 32

12.1. Binary Linking Compatibility 32

12.2. Calling Conventions and Foreign Function Interface 32

4 Request For Comment on Draft Specification for The CXING Programming Language.

12.3. Finalization and Garbage Collection 34

13. Standard Library 37

14. Library for the String Data Type 37

15. Library for the Describing Data Structure Layout 38

16. Type Reflection 39

17. Library for Floating Point Environment 39

18. Library for Input and Output 41

19. Library for Multi-Threading 41

19.1. Exclusive and Sharable Objects and Mutices (Mutex) 41

Annex A. Identifier Namespace 43

A.1. Reserved Identifiers 43

A.2. Conventions for Identifiers 43

Request For Comment on Draft Specification for The CXING Programming Language. 5

6 Request For Comment on Draft Specification for The CXING Programming Language.

The cxing Programming Language

1. Introduction

Goal

Naming

License

Features

Memory and Thread Safety

Build Info: This build of the (draft) spec is based on git commit
bd6cfd82887e2e742e902d72383fed82508137c0

4

The 'cxing' programming language (with or without caps) is a general-purpose programming language
with a C-like syntax that is memory-safe, aims to be thread-safe, and have suprise-free semantics. It aims
to have foreign interface with other programming languages, with C as its primary focus.

5

It attempts to pioneer in the field of efficient, expressive, and robust error handling using language design
toolsets.

6

The language is meant to be an open standard with multiple independent implementations that are widely
interoperable. It can be implemented either as interpreted or as compiled. Programs written in cxing
should be no less portable than when it's written in C.

7

Features are introduced on strictly maintainable basis. The reference implementation will be an AST-based
interpreter (or a transpiler to C?), which will serve as instrument of verification for additional
implementations. The version of the language (if it ever changes) will be independent of the versions of
the implementations.

8

The Features section has more information on how the goals are achieved.9

Just as Java is a beautiful island in Indonesia, we wanted a name that pride ourselves as Earth-Loving
Chinese here in Shanghai, therefore we choose to name our language after the National Nature Reserve
Park of Changxing Island. However, the name is too long to be used directly, and "changx" looked too
much like 'clang', so we simplified it to "cxing", which we find both pleasure in looking at it, and the
name giving connotation with an information technology product.

10

The language itself and the reference implementation are released into the public domain.11

To best reflect the intent of the design, the specification shall be programmer-oriented. The purpose of
features will be explained, with examples provided on how they're to be used. The syntax and semantic
definitions follow.

12

The language does not expose pointers - to data or to function - only opaque object handles. It uses
reference counting with garbage collection to ensure memory safety. It has separate type domain for
sharable types catered to multi-threaded access, and exclusive types for efficient access within a

single thread; only sharable types can be declared globally.

13

The cxing Programming Language 7

Null safety.

// We do not know the schema of this object, but we know it can be
// one of the two alternatives. Here the "??" punctuation is the
// nullish coalescing operator:
timescale = mp4box.movie.timescale ??
 mp4box.fragments[0].timescale ??
 mp4file.timescale;

Nullish NaNs

Language ought to specify ways for program to transfer the control of execution, or to
evaluate certain expressions when a subset (some or all) of exceptions occur.

It's typical to desire some result come out of a failing program, it is even more desirable that the failure of
a single component doesn't deny the service of users, it's very desirable that error recovery can be easy to
program, and it's undesirable that errors cannot be detected.

14

In cxing, errors occur in the forms of nullish values. For the special value null , accessing any member

of it yields null , and calling a null as a function returns null . Nullish values can be substituted
with other alternative values that programs recover from errors.

15

A bit of background first.16

The IEEE-754 standard for floating point arithmetic specifies handling of exceptional conditions for
computations. These conditions can be handled in the default way (default exception handling) or in some
alternative ways (alternative exception handling).

17

The 1985 edition of the standard described exceptions and their default handling in section 7, and
handling using traps in section 8. These were revised as "exceptions and default exception handling" in
section 7 as well as "altenate exception handling attributes" in section 8 in the 2008 edition of the standard
- these "attributes" are associated with "blocks" which (as most would expect) are group(s) of statements.
Alternate exception handling are used in many advanced numerical programs to improve robustness.

18

As a prescriptive standard, it was intended to have language standards to describe constructs for handling
floating point errors in a generic way that abstracts away the underlying detail of system and hardware
implementations. In doing so, the standard itself becomes non-generic, and described features specific to
some languages that were not present in others.

19

The cxing language employs null coalescing operators as general-purpose error-handling syntax, and
make it cover NaNs by making them nullish. As an unsolicited half-improvement, I (@dannyniu) propose
the following alternative description for "alternate exception handling":

20

As an example, the continued fraction function in code example A-16 from "Numerical Computing
Guide" of Sun ONE Studio 8 (https://www5.in.tum.de/~huckle/numericalcomputationguide.pdf , accessed
2025-08-15) can be written in cxing as:

21

8 Features

https://www5.in.tum.de/~huckle/numericalcomputationguide.pdf

subr continued_fraction(val N, val a, val b, val x, ref pf, ref pf1)
{
 decl f, f1, d, d1, pd1, q;
 decl j;

 f1 = 0.0;
 f = a[N];
 for(j=N-1; j>=0; j--)
 {
 d = x + f;
 d1 = 1.0 + f;
 q = b[j] / d;
 f1 = (-d1 / d) * q _Fallback f1 = b[j] * pd1 / b[j+1];
 pd1 = d1;
 f = a[j] + q;
 }
 pf = f;
 pf1 = f1;
}

Reproducibility issues treated in the standard are further discussed in 11.3. Reproducibility and
Robustness

22

Features 9

10 Features

2. Lexical Elements.

Comments

Identifiers and Keywords

// Types:
long ulong double val ref

// Special Values:
true false null

// Phrases:
return break continue and or _Fallback

// Statements and Declarations:
decl

// Control Flows:
if else elif while do for

// Functions:
subr method ffi this

// Translation Unit Interface:
_Include extern

Numbers

23

For the purpose of this section, the POSIX Extended Regular Expressions (ERE) syntax is used to
describe the production of lexical elements. The POSIX regular expression is chosen for it being vendor
neutral. There's a difference between the POSIX semantic of regular expression and PCRE semantic, the
latter of which is widely used in many programming languages even on POSIX platforms, most notably
Perl, Python, PHP, and have been adopted by JavaScript. Care have been taken to ensure the expressions
used in this chapter are interpreted identically under both semantics.

24

Comments in the language begin with 2 forward slashses: // , and span towards the end of the line.

Another form of comments exists, where it begins with /* and ends with */ - this form of comment
can span multiple lines.

25

Comments in the following explanatory code blocks use the same notation as in the actual language.26

An identfier has the following production: [_[:alpha:]][_[:alnum:]]* . A keyword is an identifier
that matches one of the following:

27

Decimal integer literals have the following production: [1-9][0-9]*[uU]? . When the literal has the

"U" suffix, the literal has type ulong , otherwise, the literal has type long .

28

Octal integer literals have the following production: 0[0-7]* . An octal literal always has type

ulong .

29

Hexadecimal integer literals have the following production: 0[xX][0-9a-fA-F]+ . A hexadecimal

literal always has type ulong .

30

Lexical Elements. 11

Characters and Strings

Escaping

For single and double quote characters, they're represented literally and don't delimit the
literal.

'a' indicates the BEL ASCII 'bell' control character,

'b' indicates the BS ASCII backspace character,

'f' indicates the FF ASCII form-feed character,

'n' indicates the LF ASCII line-feed character,

'r' indicates the CR ASCII carriage return character,

't' indicates the HT ASCII horizontal tab character,

'v' indicates the VT ASCII vertical tab character.

Hexadecimal byte literal. The first character is interpreted as the high nibble of the byte, while the
second the low.

Octal byte literal. The characters (total 3 at most) are interpreted as an octal integer literal used as
value for the byte. If there are 3 digits, then the first digit must be between 0 and 3.

Punctuations

() [] =? . ++ -- + - ~ ! * / %
<< >> >>> < > & ^ |
<= >= == != === !== && || ?? ? :
= *= /= %= += -= <<= >>= >>>= &= ^= |= &&= ||= ,
; { }

Fraction literals has the following production: [0-9]+\.[0-9]*|\.[0-9]+ . The literal always has

type double .

31

Decimal scientific literals is a fraction literal further suffixed by a decimal exponent literal production:
[eE][-+]?[0-9]+ . The digits of the production indicates a power of 10 to raise fraction part to.

32

Hexadecimal fraction literal has the following production:
0[xX]([0-9a-fA-F]+.[0-9a-fA-F]*|.[0-9a-fA-F]+) - this production is NOT a valid lexical

element in the language, but hexadecimal scientific literal is, which is defined as hex fraction literal
followed by hexadecimal exponent literal - having the production: [pP][-+]?[0-9]+ . The digits of
the production indicates a power of 2 to raise the fraction part to.

33

Character and string literals have the following production:
['"]([^\]|\\(["'abfnrtv]|x[0-9a-fA-F]{2,2}|[0-7]{1,3}))['"]

34

In the 2nd subexpression, each alternative have the following meanings:35

1.

◦

◦

◦

◦

◦

◦

◦

◦

2.

3.

When single-quoted, the literal is a character literal having the value of the first character as type long ,
the behavior is implementation-defined if there are multiple characters.

36

When double-quoted, the literal is a string literal having type str .37

A punctuation is one of the following:38

12 Lexical Elements.

3. Expressions

3.1. Grouping, Postifix, and Unaries.

primary-expr % primary
: "(" expressions-list ")" % paren
| "[" expressions-list "]" % array
| identifier % ident
| constant % const
;

paren : The value is that of the expressions-list .

array : The value is an array consisting of elements from the expressions-list .

ident : The value is whatever stored in the identifier.

const : The value is that represented by the constant.

postfix-expr % postfix
: primary-expr % degenerate
| postfix-expr "=?" primary-expr % nullcoalesce
| postfix-expr "[" expressions-list "]" % indirect
| postfix-expr "(" expressions-list ")" % funccall
| postfix-expr "." identifier % member
| postfix-expr "++" % inc
| postfix-expr "--" % dec
| object-notation % objdef
;

nullcoalesce : If the value of postfix-expr isn't nullish, then the value is that of

postfix-expr , otherwise that of primary-expr .

indirect : Reads the key identified by expressions-list from the object identified by

postfix-expr . The result is an lvalue.

funccall : Calls postfix-expr as a function, given expressions-list as parameters.

If postfix-expr is a member , then its postfix-expr is provided as the this parameter
to a potential method call. The result is the return value of the function. See 8.3. Subroutines and
Methods for further discussion.

member : Reads the key identified by the spelling of identifier from the object identified by

postfix-expr . The result is an lvalue.

inc : Increment postfix-expr by 1. The result is the pre-increment value of

postfix-expr . postfix-expr MUST be an lvalue.

dec : Decrement postfix-expr by 1. The result is the pre-decrement value of

postfix-expr . postfix-expr MUST be an lvalue.

objdef : See 10. Type Definition and Object Initialization Syntax.

•

•

•

•

•

•

•

•

•

•

•

Note: Previously, the close-binding null-coalescing operator was -> , this was changed as it had been
desired to reserve it for a 'trait' static call syntax where the first argument of a subroutine (i.e. non-method
function) receives the value of or a reference to the left-hand of the operator. This is tentative and no
commitment over this had been made yet. All in all, the close-binding null-coalescing operator is now
=? . (Note dated 2025-09-26.)

39

Expressions 13

unary-expr % unary
: postfix-expr % degenerate
| "++" unary-expr % inc
| "--" unary-expr % dec
| "+" unary-expr % positive
| "-" unary-expr % negative
| "~" unary-expr % bitcompl
| "!" unary-expr % logicnot
;

inc : Increment unary-expr by 1. The result is the post-increment value of unary-expr .

unary-expr MUST be an lvalue.

dec : Decrement unary-expr by 1. The result is the post-decrement value of unary-expr .

unary-expr MUST be an lvalue.

positive : The result is that of unary-expr implicitly converted to a number if necessary.

negative : The result is the negative of unary-expr , which is implicitly converted to a
number if necessary.

bitcompl : The result is the bitwise complement of unary-expr under integer context.

logicnot : The result is 0 if unary-expr is non-zero, and 1 if unary-expr compares
equal to 0 (both +0 and -0).

3.2. Arithmetic Binary Operations

mul-expr % mulexpr
: unary-expr % degenerate
| mul-expr "*" unary-expr % multiply
| mul-expr "/" unary-expr % divide
| mul-expr "%" unary-expr % remainder
;

multiply : The value is the product of mul-expr and unary-expr .

divide : The value is the quotient of mul-expr divided by unary-expr .

remainder : The value is the remainder of mul-expr modulo unary-expr .

•

•

•

•

•

•

For inc and dec in unary and postfix , and positive and negative , operation occur

under arithmetic context. For bitcompl and logicnot , the operation occur under integer context.

40

•

•

•

The result of division on integers SHALL round towards 0.41

The remainder computed SHALL be such that (a/b)*b + a%b == a is true.42

If the divisor is 0, then the quotient of division becomes positive/negative infinity of type double if the

sign of both operands are same/different, while the remainder becomes NaN , with the "invalid" floating
point exception signalled.

43

For the purpose of determining the sign of operands, the integer 0 in ulong and two's complement

signed long are considered to be positive.

44

14 Expressions

remainder x % y shall be such x-ny such that for some integer n , if y is non-zero, the

result has the same sign as x and magnitude less than that of y .

add-expr % addexpr
: mul-expr % degenerate
| add-expr "+" mul-expr % add
| add-expr "-" mul-expr % subtract
;

add : The value is the additive sum of add-expr and mul-expr .

subtract : The value is the difference of subtracting mul-expr from add-expr .

3.3. Bit Shifting Operations

bit-shift-expr % shiftexpr
: add-expr % degenerate
| bit-shift-expr << add-expr % lshift
| bit-shift-expr >> add-expr % arshift
| bit-shift-expr >>> add-expr % rshift
;

lshift : The value is the left-shift bit-shift-expr by add-expr bits.

arshift : The value is the arithmetic-right-shift bit-shift-expr by add-expr bits. This

is done without regard to the actual signedness of the type of bit-shift-expr operand.

rshift : The value is the logic-right-shift bit-shift-expr by add-expr bits. This is done

without regard to the actual signedness of the type of bit-shift-expr operand.

Editorial Note: The first 3 of the above 4 paragraphs were together 1 paragraph in a previous version of
the draft before 2025-08-25. This had the potential of causing the confusion that remainder is only
applicable to integers. Because now remainder is also applicable to floating points, this is first separated
into its own paragraph. The rule regarding type conversion on division by 0 is of separate interest, so it's
also an individual paragraph now. The 4th paragraph is added on 2025-08-25.

45

Note: The condition for determining remainder is equivalent to:46

These are separate descriptions for integer modulo operator and floating point fmod function in the C
language, as such, an implementation may utilize these facilities in C. Any inconsistency between these 2
definitions in C are supposedly unintentional from the standard developer's perspective.

47

All of mulexpr occur under arithmetic context.48

•

•

All of addexpr occur under arithmetic context.49

•

•

•

All of shiftexpr occur under integer context.50

Side Note: There was left and right rotate operators. Since there's only a single 64-bit width in native
integer types, bit rotation become meaningless. Therefore those functionalities will be offered in the
standard library method functions.

51

Expressions 15

3.4. Arithmetic Relations

rel-expr % relops
: bit-shift-expr % degenerate
| rel-expr "<" bit-shift-expr % lt
| rel-expr ">" bit-shift-expr % gt
| rel-expr "<=" bit-shift-expr % le
| rel-expr ">=" bit-shift-expr % ge
;

lt : True if and only if rel-expr is less than bit-shift-expr .

gt : True if and only if rel-expr is greater than bit-shift-expr .

le : True if and only if rel-expr is less than or equal to bit-shift-expr .

ge : True if and only if rel-expr is greater than or equal to bit-shift-expr .

eq-expr % eqops
: rel-expr % degenerate
| eq-expr "==" rel-expr % eq
| eq-expr "!=" rel-expr % ne
| eq-expr "===" rel-expr % ideq
| eq-expr "!==" rel-expr % idne
;

eq : True if left operand equals the right under arithmetic context; or if one is null , the other is
of the integer value 0. False otherwise.

ne : True if left operand does not equal the right operand. This includes the case where one

operand is of integer values other than 0 and the other is null . False otherwise.

ideq : True if left operand equals the right under arithmetic context; or if both are null . False
otherwise.

idne : True if left operand does not equal the right operand. This includes the case where one

operand is of the integer value 0 and the other is null . False otherwise.

3.5. Bitwise Operations

bit-and % bitand
: eq-expr % degenerate
| bit-and "&" eq-expr % bitand
;

bit-xor % bitxor
: bit-and % degenerate
| bit-xor "^" bit-and % bitxor
;

bit-or % bitxor
: bit-xor % degenerate
| bit-or "|" bit-xor % bitor
;

bitand : The value is the bitwise and of 2 operands.

•

•

•

•

All of relops occur under arithmetic context. If either operand is NaN, then the value of the expression
is false.

52

•

•

•

•

•

16 Expressions

bitxor : The value is the bitwise exclusive-or of 2 operands.

bitor : The value is the bitwise inclusive-or of 2 operands.

3.6. Boolean Logics

logic-and % logicand
: bit-or % degenerate
| logic-and "&&" bit-or % logicand
;

logic-or % logicand
: logic-and % degenerate
| logic-or "||" logic-and % logicor
| logic-or "??" logic-and % nullcoalesce
;

logicand : if the first operand is zero or null , then this is the result and the second operand is
not evaluated, otherwise, it's the value of the second operand.

logicor : if the first operand is non-zero and non- null , then this is the result and the second
operand is not evaluated, otherwise, it's the value of the second operand.

nullcoalesce : Refer to postfix-expr .

3.7. Compounds

cond-expr % tenary
: logic-or % degenerate
| logic-or "?" expressions-list ":" cond-expr % tenary
;

tenary : The logic-or is first evaluated. If it's non-zero and non- null , then

expressions-list is evaluated; otherwise, cond-expr is evaluated; The result is

whichever expressions-list or cond-expr evaluated.

assign-expr % assignment
: cond-expr % degenerate
| unary-expr "=" assign-expr % directassign
| unary-expr "*=" assign-expr % mulassign
| unary-expr "/=" assign-expr % divassign
| unary-expr "%=" assign-expr % remassign
| unary-expr "+=" assign-expr % addassign
| unary-expr "-=" assign-expr % subassign
| unary-expr "<<=" assign-expr % lshiftassign
| unary-expr ">>=" assign-expr % arshiftassign
| unary-expr ">>>=" assign-expr % rshiftassign
| unary-expr "&=" assign-expr % andassign
| unary-expr "^=" assign-expr % xorassign
| unary-expr "|=" assign-expr % orassign
| unary-expr "&&=" assign-expr % conjassign
| unary-expr "||=" assign-expr % disjassign
;

directassign : writes the value of assign-expr to unary-expr .

compound assignments: writes the computed value to unary-expr .

•

•

All of the bitwise operations occur under integer context.53

•

•

•

•

•

•

Expressions 17

expressions-list % exprlist
: assign-expr % degenerate
| expressions-list "," assign-expr % exprlist
;

exprlist : A list of expressions.

In the context of function calls and arrays, all entities constitutes the list, and elements are
evaluated in arbitrary order.

In the context of an expression phrase, expressions-list is first evaluated, then

assign-expr is evaluated next, and the value of the expression is that of

assign-expr .

4. Phrases

primary-phrase % primaryphrase
: expressions-list % degenerate
| flow-control-phrase % flowctrl
;

degenerate : The value of this phrase is that of the expression.

flowctrl : This phrase alters the normal control flow, it has no value.

flow-control-phrase % flowctrl
: control-flow-operator % op
| control-flow-operator label % labelledop
| "return" % returnnull
| "return" expression % returnexpr
;

op : Apply the flow-control operation to the inner-most applicable scope.

labelledop : Apply the flow-control operation to the labelled statement scope.

returnnull : Terminates the executing function. If the caller expected a return value, it'll be

null .

returnexpr : Terminates the executing function with return value being that of expression .

control-flow-operator: % flowctrlop
: "break" % break
| "continue" % continue
;

break : Terminates the applicable loop.

See 8.2. Object/Value Key Access for further discussion.54

•

◦

◦

Between expressions and statements, there are phrases.55

Phrases are like expressions, and have values, but due to grammatical constraints, they lack the usage
flexibility of expressions. For example, phrases cannot be used as arguments to function calls, since
phrases are not comma-delimited; nor can they be assigned to variables, since assignment operators binds
more tightly than phrase delimiters. On the other hand, phrases provides flexibility in combining full
expressions in way that wouldn't otherwise be expressive enough through expressions due to use of
parentheses.

56

•

•

•

•

•

•

•

18 Phrases

continue : Skip the remainder of the applicable loop body and proceed to the next iteration.

and-phrase % andphrase
: primary-phrase % degenerate
| and-phrase "and" primary-phrase % conj
;

or-phrase % orphrase
: and-phrase % degenerate
| or-phrase "or" and-phrase % disj
| or-phrase "_Fallback" and-phrase % nullcoalesce
;

conj : Refer to logic-and .

disj : Refer to logic-or .

nullcoalesce : Refer to postfix-expr .

5. Statements
statement % stmt
: ";" % emptystmt
| identifier ":" statement % labelled
| or-phrase ";" % phrase
| conditionals % cond
| while-loop % while
| do-while-loop % dowhile
| for-loop % for
| "{" statements-list "}" % brace
| declaration ";" % decl
;

emptystmt : This does nothing in a function body.

labelled : Identifies the statement with a label.

brace : Executes statements-list .

5.1. Condition Statements

conditionals % condstmt
: predicated-clause % base
| predicated-clause "else" statement % else
;

else : Executes predicated-clause , if none of its statement(s) were executed due to no

predicate evaluated to true, then statement is executed.

predicated-cluase % predclause
: "if" "(" expressions-list ")" statement % base
| predicate-clause "elif" "(" expressions-list ")" statement % genrule
;

base : Evaluate expressions-list (in expression phrase context as mentioned in the 3.7.

Compounds), if it's true, then statement is executed, otherwise it's not executed.

•

•

•

•

•

•

•

•

•

Statements 19

genrule : Executes predicate-clause , if none of its statement(s) were executed due to no

predicate evaluated to true, then evaluate expressions-list , if that is still not true, then

statement is not executed, otherwise, statement is executed.

5.2. Loops

while-loop % while
: "while" "(" expressions-list ")" statement % rule
;

rule : To execute rule , evaluate expressions-list , if it's true, then execute

statement and then execute rule .

do-while-loop % dowhile
: "do" "{" statements-list "}" "while" "(" expressions-list ")" ";" % rule
;

rule : To execute rule , execute statements-list , then evaluate expressions-list ,

if it's true, then execute rule .

for-loop % for
: "for" "(" expressions-list ";"
 expressions-list ";"
 expressions-list ")" statement % classic

| "for" "(" declaration ";"
 expressions-list ";"
 expressions-list ")" statement % vardecl
;

classic : Evaluate expressions-list before the first semicolon, then execute the for loop
by invoking the "execute the for loop once" recursive procedure described later.

vardecl : Evaluate declaration , then execute the for loop in a fashion similar to

classic .

5.3. Statements List

statement-list % stmtlist
: statement ";" % base
| statement-list statement ";" genrule
;

base : statement is executed, the semicolon is a delimitor.

genrule : statement-list is first executed, then statement is executed.

•

•

•

•

•

To execute the for loop once, evaluate expressions-list after the first semicolon, if it's true, then

statement is evaluated, then the expressions-list after the second semicolon is evaluated, and
the for loop is executed once again. For the purpose of "proceeding to the next iteration" as mentioned in
continue , the expressions-list after the second semicolon is not considered part of the loop

body, and is therefore always executed before proceeding to the next iteration.

57

The description here used the word "once" to describe the semantic of the loop in terms of "functional
recursion", where "functional" is in the sense of the "functional programming paradigm".

58

•

•

20 Statements

5.4. Declarations

declaration % decl
: "decl" identifier % singledecl
| "decl" identifier "=" assign-expr % signledeclinit
| declaration "," identifier % declarelist1
| declaration "," identifier "=" assign-expr % declarelist2
;

singledecl : Declares a variable with the spelling of the identifier as its name, and initialize its

value to null .

singledeclinit : Declares a variable with the spelling of the identifier as its name, and

initialize its value to that of assign-expr .

declarelist1 : In addition to what's declared in declaration , declare another variable in a

way similar to singledecl .

declarelist2 : In addition to what's declared in declaration , declare another variable in a

way similar to singledeclinit .

6. Functions
function-declaration % funcdecl
: "subr" identifier arguments-list statement % subr
| "method" identifier arguments-list statement % method

| "ffi" "subr" type-keyword identifier arguments-list ";" % ffisubr
| "ffi" "method" type-keyword identifier arguments-list ";" % ffimethod
;

arguments-list % arglist
: "(" ")" % empty
| arguments-begin ")" % some
;

arguments-begin % args
: "(" type-keyword identifier % base
| arguments-begin "," type-keyword identifier % genrule
;

type-keyword % typekw
: "val" % val
| "ref" % ref
| "long" % long
| "ulong" % ulong
| "double" % double
;

Because the value of a variable that held integer value may transition to null after being assigned the
result of certain computation, the variable needs to hold type information, as such, variables are
represented conceptually as "lvalue" native objects. (Actually, just value native objects, as their scope and
key can be deduced from context.)

59

•

•

•

•

For subr and method , the function so defined or declared is a non-FFI function. The type of its

parameters must be val or ref . Its return type is implicitly val and is not spelled out.

60

Functions 21

7. Translation Unit Interface

7.1. Translation Unit Source Code Syntax

TU % TU
: entity-declaration % base
| TU entity-declaration % genrule
;

entity-declaration % entdecl
: "_Include" string-literal ";" % srcinc
| "extern" function-declaration % extern
| function-declaration % implicit
;

For ffisubr and ffimethod , the function so defined or declared is an FFI function. The type of its

parameters can be val , ref , long , ulong , double , and they're passed to the function as
described in 12.2. Calling Conventions and Foreign Function Interface. The return type MUST NOT be
ref as prohibited in 8.3. Subroutines and Methods.

61

For subr and method , function body MUST be either emptystmt , in which case the

function-declaration declares a function, or brace , in which case it defines a function. FFI

functions (ffisubr and ffimethod) can be declared, but cannot be defined in cxing.

62

The type and order of parameters between all declarations and the definition of the function MUST be
consistent, furthermore, whether a function is a method or a subroutine, is or is not an FFI function MUST
be consistent. The name of the parameters may be changed in the source code of a program. Depending on
the context, this may provide the benefit of both explanative argument naming in declaration, and
avoidance identifier collision in function definition when the argument is appropriately renamed.

63

A translation unit consist of a series of function declarations and definitions. Because definition of objects
occur during run time, it's not possible to define data objects of static storage duration in cxing, this is
recognized as unfortunate and accepted as a design decision.

64

A translation unit in cxing correspond to relocatable code object, or a file contain such information. We
choose such definition to emphasize binary runtime portability; the word "translate/translation" doesn't
require translation to occur - it's allowed for an implementation to interpret the source code and execute it
directly for when it can be achieved. The terms "translation unit" and "relocatable object" take their usual
commonly accepted meanings in building programs and applications.

65

The goal symbol of a source code text string is TU - the translation unit production. It consist of a series
of entity declarations.

66

There MUST NOT be more than 1 definition of a function.67

By default, all entity declarations are internal to the translation unit. For a declaration to be visible in
multiple translation units, it must be declared "external" with the extern keyword.

68

As a best practice, external declarations should be kept in "header" files, and included (explained shortly)
in a source code file. The recommended filename extension for cxing source code file is .cxing , and

.hxing for headers (named after the Hongxing Yu village on the Changxing Island).

69

22 Translation Unit Interface

7.2. Source Code Inclusion

8. Language Semantics

8.1. Objects and Values

the value proper,

a type,

for an lvalue - which can be the left operand of respective assignment expression, there's the
following additional properties:

a scope object - this can be a block, an object; for sharable types, this can also be the
"global" scope,

a key - this identifies/is the name of the lvalue under the scope.

Source code inclusion is a limited form of reference to external definitions. This is not preprocessing, not
importation, and not substitute for linking. Source code inclusion is exclusively for sharing the
declarations in multiple source code files and translation units.

70

By default, header files are first searched in a set of pre-defined paths. (These paths are typically hierarchy
organized and implemented using a file system.) If the header isn't found in the pre-defined paths, then it's
searched relative to the path of the source code file. However, if the string literal naming the header file
begins with ./ or ../ , then it's first searched relative to the path of the source code file, then the pre-
defined set of paths.

71

An object may have properties, properties may also be called members.72

Note: The word "property" emphasizes the semantic value of the said component, while the word
"member" emphasizes its identification. Both words may be used interchangeably consistent with the
intended point of perspective.

73

The internals of an object is largely opaque to the language. The primary interface to objects are functions
that operates on them.

74

Note: Functions in compiled implementations follow platform ABI's calling convention. Because certain
opaque object types (such as the string type) in the runtime may need to be used in functions compiled on
different implementations, the consistency of their structure layout is essential.

75

A native object is a construct for describing the language. It has a fixed set of properties, and are copied by
value; mutating a native object does not affect other copies of the object.

76

An value is a native object with the following properties:77

1.

2.

3.

1.

2.

Other native objects (may) exist in the language.78

All values have a (possibly empty) set of type-associated properties that're immutable. These type-
associated properties take priority over other properties. The behavior is UNSPECIFIED when these
properties are written to.

79

Note: The data structure for the value native objects are further defined to enable the interoperability of
certain language features. Values are such described to enable discussion of "lvalue"s, alternative
implementations may use other conceptual models for lvalues should they see fit.

80

Language Semantics 23

8.2. Object/Value Key Access

if the key refers to one of the type-associated properties:

a native object results consisting of:

value-proper: the value of this property,

type: the type of this property.

if the key is not one of the type-associated properties:

if the key __get__ is one of the type-associated properties, then this method is used to
retrieve the actual property:

this method is called with the object as its this parameter,

this method is called with the key as a val ,

its return value is augmented with the 'scope' and 'key' being the object and the key
used to access this property, to yield an lvalue.

if the key __get__ is not defined as one of the type-associated properties, then an lvalue

being null augmented with 'scope' and 'key' being the object and the key used to access
this property is returned.

For the purpose of this section, it is assumed that the storing of the value onto the object is done
using the __set__ type-assocaited method property. The object is passed as the this

parameter, the key as the first parameter as a val , and the value as the value as the the second
parameter as a value native object. See 12.2. Calling Conventions and Foreign Function Interface-
the new value is assigned to the identified key on the object, with the following exceptions:

if the write is a compound assignment (i.e. any assignment of form other than directassign),
then the key is read from the object, the computation part of the compound assignment is
performed, and the result is stored written to they key on the object.

As described in 8.1. Objects and Values objects have properties. The key used to access a value on an
object is typically a string or an integer.

81

When the key used to access a property is an integer, there may be a mapping from the integer to a string
defined by the implementation of the runtime. Portable applications SHOULD NOT create objects with
mixed string and integer keys. All implementations of the runtime SHALL guarantee there's no collision
between any key that is the valid spelling of an identifier and any integer between 0 and 1010 inclusive.

82

Note: The limit was chosen for efficiency reasons. While implementing a number to string conersion
would immediately solve the issue of collision between numerical and identifier keys, it's slightly
inefficient. A second option would be to pad the integer word with bytes that can never be valid in
identifiers, this would be the best of both worlds. Yet considering most applications won't be needing such
big array, and those that do would probably go for the string type in the standard library, a limit is set so
that plausible real-world applications and implementations can enjoy the efficiency enabled by such
latitude.

83

To read a key from an object:84

1.

1.

▪

▪

2.

1.

1.

2.

3.

2.

Note: the return value from 2.1.3. may be null .85

To write a key onto an object:86

•

•

Note: Compound assignment is different from loading the values from both sides of the assignment
operator, perform the computation, then storing the result into the key, as the latter performs the read on
the lvalue twice.

87

24 Language Semantics

For the purpose of this section, it is assumed that the deletion of the value from the object is done
using the __unset__ type-associated method property. The object is passed as the this

parameter, the key as the first parameter as a val .

any resources used by the value associated with the key on the object is finalized, if the
__final__ method property exists on the object, then it's called, the key is then removed from

the object, after which the member identified by the key is considered not defined on the object
from this point onwards (until it's being written to again).

8.3. Subroutines and Methods

When accessed from the key of an object:

a method carries an implicit this parameter,

a subroutine does not carry the implicit this .

When invoked by name:

the implicit this in a method is null .

a subroutine is invoked as is.

The val and ref Function Operand Interfaces

When a key is being deleted from an object:88

•

•

Note: Destruction of values and finalization of resources are further discussed in 12.3. Finalization and
Garbage Collection.

89

Both subroutines and methods are codes that can be executed in the language, the distinction is that
methods have an implicit this parameter while subroutines don't - for compiled implementations, this
is significant, as it causes difference in parameter passing under a given calling convention.

90

Subroutines and methods are distinct types, as such there's no restriction that subroutines have to be called
directly through identifiers or that methods have to be identified through a member access.

91

•

◦

◦

•

◦

◦

For both subroutines and methods, they have both FFI and non-FFI variants. FFI stands for foreign
function interface. In non-FFI variants their arguments are dynamically typed, and can be passed either by
value or by reference. For FFI variants, the type of their arguments and return values have to be declared
explicitly.

92

(Non-FFI) subroutine functions, method functions, and FFI subroutine functions and FFI method
functions are 4 distinct types.

93

For non-FFI functions, when a parameter is declared with val , then the corresponding argument is

passed by value; when declared with ref , then passed by reference.

94

No type of function may return ref for the simple reason that certain value that may potentially be
returned are of "temporary" storage duration - they exist only on the stack frame of called function, and
are destroyed when they go out of scope. Adding compile-time check to verify that such variables are not
returned as reference are more complex to implement than simply just outlawing them outright.

95

The this parameter receive its arguments as val in the runtime. This allows methods to be assigned
to different objects and access other object properties - including type-associated properties such as
__get__ , etc.

96

Language Semantics 25

9. Types and Special Values

The long and ulong types

The double type

The str type

The true and false special values

The null and NaN special values

Note: In a previous revision, there was a note claimed that this being a pointer handle. The idea back
then was that when cxing runtime is implemented with SafeTypes2, certain APIs of the library can be used
without modification. However, better runtime implementation stratagy was discovered which resulted in
the introduction of type-associated properties. And so this parameter is received as a val in all (both
actually) types of methods. Still, to facilitate the correct passing of parameters, it necessitates the
distinction between methods and subroutines.

97

The long type is a signed 64-bit integer type with negative values having two's complement

representation. The ulong type is an unsigned 64-bit integer type. Both types have sizes and alignments
of 8 bytes.

98

Note: 32-bit and narrower integer types don't exist natively, primarily because of the year 2038 problem
and issue with big files. However, respective type objects for smaller integers, as well as those for
float / binary32 and other floating point types are defined in the standard library to interpret data

structures in byte strings.

99

The keyword bool is used exclusively as an alias for the type long , there is no restriction that a

bool can store only 0 or 1, it exist primarily for programmers to clarify their intentions.

100

The double type is the floating point number type. It should correspond to the IEEE-754 (a.k.a. ISO/

IEC-60559) binary64 type - that is, it should have 1 sign bit, 11 exponent bits, and 52 mantissa bits.
The type have sizes and alignment of 8 bytes.

101

The string type str is not a built-in type, instead, it's an opaque object type defined in the standard

library. The string type has significance in the indirect member access operator in a

postfix-expr postfix expression.

102

The special value true is equal to 1 in type long . The special value false is equal to 0 likewisely.103

The null special value results in certain error conditions. Accessing any properties (unless otherwise

stated) results in null ; calling null as if it's a function results in null . null compares equal to
itself.

104

The NaN special value represents exceptional condition in mathematical computation. NaN does not
compare equal to any number, or to itself.

105

Both null and NaN are considered nullish in coalescing operations.106

26 Types and Special Values

Implicit Type and Value Conversion

The types long and ulong are collectively "integer context";

the type double is the "floating point context";

the types long , ulong , and double are collectively "arithmetic context".

the special value null have value 0,

all opaque objects have a single value of 1,

floating point values are converted by discarding fractional part, with the behavior on overflow
being UNSPECIFIED.

integers are converted preserving value to the extent allowed by precision.

the special value null is converted to NaN .

all opaque objects are converted to +1.0 .

before the following occur, null are converted to 0 in long , and opaque objects to 1, also in

long .

operations involving only long s results in long operands;

operations involving ulong but not double results in ulong operands;

operations involving double results in double ;

10. Type Definition and Object Initialization
Syntax

decl Complex := namedtuple() { 're': double, 'im': double };
decl I := Complex() { 're': 0, 'im': 1 };
decl sockaddr := dict() { 'host': "example.net", 'port': 443 };

See 11. Numerics and Maths for furher discussion.107

Values and/or their types may be converted used under certain contexts:108

•

•

•

Under a integer context:109

•

•

•

Under the floating point context:110

•

•

•

Under arithmetic context:111

•

•

•

•

Note: The special value NaN always have type double .112

Note: It was considered to have certain operations in integer context that involved floating points to have
NaNs, but this was dropped for 2 simple reasons: 1st, the current conversion rule is much simpler written,
and 2nd, there exist prior art with JavaScript.

113

There's a simple syntax in cxing for creating compound objects and types:114

Type Definition and Object Initialization Syntax 27

namedtuple() factory function creates such object that is a type object that creates another type

object with 2 members named "re" and "im", this type is assigned to Complex , which is then
used to create a "complex number" with the value of the imaginary unit;

dict() factory function creates a type object that creates a dictionary, initializing sockaddr
with 2 members - "host" with the value of "example.net" and "port" with 443.

[ffi] method [val] __initset__(ref key, ref value);

objdef-start % objdefstart
: objdef-start-comma % comma
| objdef-start-nocomma % nocomma
;

objdef-start-comma % objdefstartcomma
: objdef-start-nocomma "," % genrule
;

objdef-start-nocomma % objdefstartnocomma
: postfix-expr "{" postfix-expr ":" assign-expr % base
| objdef-start-nocomma "," postfix-expr ":" assign-expr % genrule
;

object-notation % objdef
: postfix-expr "{" "}" % empty
| objdef-start "}" % some
;

In the above scenario,115

•

•

namedtuple , Complex , and dict are "type objects", of which, with namedtuple being sort of a
meta.

116

A type object contains an method property named __initset__ declared as follow:117

The __initset__ function may be defined in cxing or in a foreign language - if the latter, then calling
conventions for foreign function interface must be followed per 12.2. Calling Conventions and Foreign
Function Interface.

118

The postfix-expr MUST NOT be inc or dec . Furthermore, if postfix-expr is

degenerate , then the primary expression MUST NOT be array or const .

119

On encountering a postfix-expr that is a type object, the key-value pairs enclosed in the braces

delimited by commas are taken and the __initset__ method is called on them in turn. The key is the
value of the postfix expression on the left side of the colon, while the value is that of the assignment
expression on the right side of the colon. After this completes, the newly created object will receive a
property named __proto__ , which will be assigned the value of postfix-expr .

120

The array production of primary expressions is a syntax sugar that invokes __initset__ with

elements in the expressions-list as value and successive integer indicies as key, starting with 0.

121

28 Type Definition and Object Initialization Syntax

Type Definition and Object Initialization Syntax 29

11. Numerics and Maths

11.1. Rounding

roundTiesToEven: This is MANDATORY and SHALL be the default within a thread when the
thread starts. The floating point value closest to the infinitely precise result is returned. If there are
two such values, the one with an even digit value at the position corresponding to the least
significant of the least significant digits of the two values will be returned.

roundTowardPositive: The least representable floating point value no less than the infinitely
precise result is returned.

roundTowardNegative: The greatest representable floating point value no greater than the
infinitely precise result is returned.

roundTowardZero: The representable floating point value with greatest magnitude no greater than
that of the infinitely precise result is returned.

11.2. Exceptional Conditions

invalid: known as "invalid operation" in standard's term. This is when:

operations involving signalling NaNs,

"cancellation of infinities" in additive, multiplicative, or some other domains. Examples
include subtracting infinity from infinity, multiplying 0 with infinity, or dividing 0 with 0 or
infinity with infinity.

the input is outside the domain of the operation, e.g. sqrt(-1).

pole: known as "division by zero" in standard's term. A pole results when operation by an operand
results in an infinite limit. Particular cases of this include 1/0, tan(90°), log(0), etc.

overflow: this is when and only when the result exceeds the magnitude of the largest representable
finite number of the floating point data type after rounding. The data type is double a.k.a.

binary64 in our language.

underflow: this is when a tiny non-zero result having an absolute value below bemin, where b is
the radix of the floating point data type - 2 in our case , and emin is, in our case -1022.

Note: emin can be derived as: 2 - 2ebits-1, where ebits is the number of bits in the exponents,
which is 11 in our case.

Note: Much of this section is motivated by a desire to have a self-contained description of numerics in
commodity computer systems, as well as an/a interpretation / explanation / rationale of the standard text
that's at least more useful in terms of practical usage than the standard text itself.

122

IEEE-754 specifies the following rounding modes:123

•

•

•

•

The standard library provides facility for setting and querying the rounding mode in the current thread.
The presence of other rounding modes (e.g. roundTiesToAway, roundToOdd, etc.) are implementation-
defined.

124

Infinity and NaNs are not numbers. It is the interpretation of @dannyniu that they exist in numerical
computation strictly to serve as error recovery and reporting mechanism.

125

IEEE-754 specifies the following 5 exceptions:126

•

◦

◦

◦

•

•

•

30 Numerics and Maths

inexact: this is when the result after rounding differs from what would be the actual result if it
were calculated to unbounded precision and range.

11.3. Reproducibility and Robustness

•

The standard library provides facility for querying, clearing, and raising exceptions. Alternate exception
handling attributes are implemented in the language as error-handling flow-control constructs, such as
null-coalescing expression and phrases operators, as well as execution control functions.

127

Floating points have a fixed significand width as well as limited range(s) of exponents, as such, they're
very similar to scientific notations, further as such, they suffer from the same inaccuracy problems as any
notation that truncates a large fraction of value digits. However, this do yield a favorable trade-off in terms
of implementation (and to some extent, usage) efficiency.

128

IEEE-754 recommends that language standard provide a mean to derive a sequence (graph actually, if
taken dependencies into account) of computation in a way that is deterministic. Many C compilers provide
options that make maths work faster using arithmetic associativity, commutativity, distributivity and other
laws (e.g. fast-math options), cxing make no provision that prevents this - people favoring efficiency and
people favoring accuracy should both be audience of this language.

129

The root cause of calculation errors stem from the fact that the significand of floating point datum are
limited. This error is amplified in calculations. A way to quantify this error is using the "unit(s) in the last
place" - ULP. There are various definitions of ULP. Vendors of mathematical libraries may at their
discretion document the error amplification behavior of their library routines for users to consult;
framework and library standards may at their discretion specify requirements in terms error amplification
limits. Developers are reminded again to recognize, and evaluate at their discretion, the trade-off between
accuracy and efficiency.

130

Because of the existence of calculation errors, floating point datum are recommended as instrument of
data exchange. In fact, earlier versions of the IEEE-754 standard distinguished between interchange
formats and arithmetic formats. Because arithmetics and the format where it's carried out are essentially
black-box implementation details, the significance of arithmetic formats is no longer emphasized in
IEEE-754.

131

The recommended methodology of arithmetic, is to first derive procedure of calculation that is a
simplified version of the full algorithm, eliminating as much amplification of error as possible, then feed
the input datum elements into the algorithm to obtain the output data. The procedure so derived should
take into account of any exceptions that might occur.

132

For example, (a+b)(c+d) = ac+ad + bc+bd have 2 additions and 1 multiplication on the left-hand
side and 3 additions and 4 multiplications on the right-hand side.

133

a program may first attempt to calculate the left hand side, because it has less chance of error
amplification. However, if the addition of c and d overflows but they're individually small enough

such that their multiplication with either a and b won't overflow, yet the sum of a and b

underflows in a certain way that's catastrophic, the the whole expression may become NaN .

134

In this case, a fallback expression may then compute the right-hand side of the expression, possibly
yielding a finite result, or at least one that arithmetically make sense (i.e. infinity).

135

The result of computation carried out using such "derived" procedure will certainly deviate from the result
from of a "complete" algorithm. Developers should recognize that robustness may be more important in
some applications than they may expect. In the limited circumstances where an application in reality is
less important, or in fact be prototyping, developer may at their careful discretion, excercise less
engineering effort when coding a numerical program.

136

Numerics and Maths 31

11.4. Recommended Applications of Floating Points

datum need to be over real-valued domain,

tolerance of loss of precision by end user.

12. Runtime Semantics

12.1. Binary Linking Compatibility

12.2. Calling Conventions and Foreign Function Interface

Finally, it is recognized that large existing body of sophisticated numerical programs are written using
3rd-party libraries, and/or using techniques that're under active research and not specified and beyond the
scope of many standards. Developers requiring high numerial sophistication and robustness are
encouraged to consult these research, and evaluate (again) the accuracy and efficiency requirements at
their careful discretion.

137

The recommended applications of floating points in computer, are Computer Graphics, Signal Processing,
Artificial Intelligence, etc.

138

Typical characteristics of these applications include:139

•

•

While the features and the specification of the language is supposed to be stable, as a guiding policy, in
the unlikely event where certain interface in the runtime posing efficiency problem are to be replaced with
alternatives, deprecation periods are given in the current major version of the runtime (and thus the
language), before removal in a future major version should that happen; in the even more unlikely event
where certain interface exposes a vulnerability so fundamental that necessitates its removal, the language
along with its runtime is revised, a new version is released, and the vulnerable version is deprecated
immediately. The versioning practice is in line with recommendation by Semantic Versioning.

140

Dynamic libraries and applications linking with dynamic libraries programmed in cxing should not
statically link with the cxing runtime. Unless no opaque objects is passed between translation units
compiled by different implementations (which is unlikely), statically linking to different incompatible
implementations of the runtime may result in undefined behavior when opaque objects and the functions
that manipulates them are from different implementations.

141

The version of the runtime and the version of the language specification are coupled together to make it
easy to determine which version of runtime should be used to obtain the features of relevant version of the
language. If the standard library is to be provided, then the runtime should be provided as part of the
standard library, the name of the linking library file should be the same for both the runtime and for when
it's extended into/as standard library.

142

The recommended name for the library corresponding to version 0.1 of the specification is
libcxing0.so.1 for systems using the UNIX System V ABI such as Linux, BSDs, and several

commercial Unix distros. For the Darwin family of operating systems such as macOS, iOS, etc. the
recommended name is libcxing0.1.dylib .

143

For some platforms such as Windows, vendors have greater control over the dynamic libraries bundled
with the programs in an application. Therefore no particular recommendations are made for these
platforms.

144

The types long and ulong are passed to functions as C types int64_t and uint64_t

respectively; the type double is passed as the C type double ; handles to full objects and opaque
objects are passed as C language object pointers.

145

32 Runtime Semantics

https://semver.org/

enum types_enum : uint64_t {
 valtyp_null = 0,
 valtyp_long,
 valtyp_ulong,
 valtyp_double,

 // the opaque object type.
 valtyp_obj,

 // `porper.p` points to a `struct value_nativeobj`.
 valtyp_ref,

 // FFI and non-FFI subroutines and methods.
 valtyp_subr = 6,
 valtyp_method,
 valtyp_ffisubr,
 valtyp_ffimethod,

 // 10 types so far.
};

struct value_nativeobj;
struct type_nativeobj;

struct value_nativeobj {
 union { double f; uint64_t l; int64_t u; void *p; } proper;
 union {
 const struct type_nativeobj *type;
 uint64_t pad; // zero-extend the type pointer to 64-bit on ILP32 ABIs.
 };
};

struct lvalue_nativeobj {
 struct value_nativeobj value;

 // The following fields are for lvalues:
 void *scope;
 void *key;
};

struct type_nativeobj {
 enum types_enum typeid;
 uint64_t n_entries;

 // There are `n_entries + 1` elements, last of which `type` being the only
 // `NULL` entry in the array.
 struct {
 const char *name;
 struct value_nativeobj *member;
 } static_members[];
};

typeid having an enumeration value of 0 - valtyp_null .

value.p.proper having NULL with typeid having valtyp_obj .

The "value" and "lvalue" native object are defined as the following C structure types:146

For the special value null , there are 2 accepted representations that implementations MUST anticipate:147

•

•

Runtime Semantics 33

12.3. Finalization and Garbage Collection

ffi subr null cxing_gc();

For non-FFI functions, parameters declared with type val receive arguments as the

struct value_nativeobj structure in runtime binding; values are returned in similarly in the

struct value_nativeobj structure type. (As mentioned in 8.3. Subroutines and Methods, no

function may return a ref .)

148

For FFI functions, parameters declared with type long , ulong , and double receive arguments as
their respective C language type, and in accordance to the ABI specification of relevant platform(s);
values are returned according to their type declaration also in accordance to relevant platform ABI
definitions.

149

For both non-FFI and FFI functions, parameters declared as ref receive arguments as the

struct value_nativeobj * pointer type in runtime binding.

150

Methods receive this as their first argument as the ref language type (i.e. the

struct value_nativeobj * runtime pointer type).

151

Resources are generically defined as what enables a program to run and function, and assciated with it.
When a value is destroyed, the resources associated with it are finalized and released, which may lead to
the resources be free for reuse elsewhere.

152

Note: On a reference-counted implementation (which is conceptually prescribed), releasing an object
"decreases" its reference count, and when the reference count reaches 0, the resources are "freed". Under
implementation-defined circumstances, an object may be released by all, but still referenced somewhere
(e.g. reference cycle), which require garbage collection to fully "free" the object and its resources.

153

Editorial Note: Previously (before 2025-09-26), finalize and destroy were used interchangeably; now
finalize refer to that of resource and destroy refer to that of values (i.e. the concept of value native
objects).

154

The cxing_gc foreign function invokes the garbage collection process.155

Note: In part because of the runtime implementation need to be informed of destruction of values to
finalize relevant resources, more pressingly because of benefit to the design of idiomatic standard library
features, copying and destruction of values are now being defined. To define the concepts in terms of
reference counts would mean to depend on intrinsic implementation details, and also that there's circular
dependency in definition. Seeking an alternative, it's discovered that copying and destroying are paired
concepts that must be described together, and this is the approach that will be taken right now.

156

To copy a value, means to preserve its existence in the event of its destruction, which causes the value
ceases to exist; when a value is copied, the value and the copied value can both exist, and the destruction
of either don't affect the existence of the other.

157

The __copy__ property is a method that copies its this argument and returns "the copy". The

__final__ property is a method that releases the resources used by the value before the destruction of
the value.

158

The __copy__ and __final__ may not necessarily be type-associated properties, programs can
define their own types with copy and finalization methods as long as the object they're implementing these
methods for have a __set__ property.

159

34 Runtime Semantics

Note: Primitive types such as long , ulong , and double may not need a __copy__ method -
runtime recognizing these sort of types may copy them in any way that may be assumed reasonable
according to common sense. For types without a __final__ method, it is assumed that there are no
resource consumed by the value beyond what's already in the value native object structure.

160

Runtime Semantics 35

36 Runtime Semantics

13. Standard Library

[ffi] {method,subr} [<type>] identifier(args);

<name1>(<name2>) := { ... }

14. Library for the String Data Type
str(val) := {
 [ffi] method [long] len(),
 [ffi] method [str] trunc(ulong newlength),
 [ffi] method [str] putc(long c),
 [ffi] method [str] puts(str s),
 [ffi] method [str] putfin(),
 [ffi] method [long] cmpwith(str s2), // efficient byte-wise collation.
 [ffi] method [bool] equals(str s2), // constant-time, cryptography-safe.
 [ffi] method [structureddata] map(val structlayout),
};

structureddata(val) := {
 [ffi] method [val] unmap(),
}

In the following sections, special notations that're not part of the langauge are used for ease of
presentation.

161

The meaning of such notation:162

is as follow:163

The bracketed [ffi] means this is a method or a subroutine can be either FFI or non-FFI. When it's

FFI, it's return type is <type> .

164

The meaning of such notation:165

is as follow:166

The entity identified by <name1> is a subclass of <name2> (typically val), and consist of additional

members enumerated by the ellipsis The word "subclass" is used here only to imply that object of

type <name1> may be used anywhere <name2> is expected. <name2> is not optional, because it
signifies to implementors of the runtime how an argument of such type are to be passed.

167

Note: The notation is inspired by Python. Object-oriented programming is not a supported paradigm of
cxing. The notation is strictly for presentation, and does not correspond to any existing language feature.

168

Because cxing is a dynamically typed language, typing is not enforced, and the implementation does not
diagnose typing errors (because there aren't any). Checking the characteristics of an object is entirely the
responsibility of codes that use it.

169

The string type str is a sequence of bytes.170

A string has a length that's reported by the len() function, and can be altered using the trunc()
function.

171

Standard Library 37

15. Library for the Describing Data Structure
Layout
decl char, byte; // signed and unsigned 8-bit,
decl short, ushort; // signed and unsigned 16-bit,
decl int, uint; // signed and unsigned 32-bit,
decl long, ulong; // signed and unsigned 64-bit,
decl half, float, double; // binary16, binary32, binary64.
// decl _Decimal32, _Decimal64; // not supported yet.
// decl huge, uhuge, quad, _Decimal128; // too large.

struct_inst(val) := {
 [ffi] method [val] __initset__(ref key, ref value),
};

packed_inst(val) := {
 [ffi] method [val] __initset__(ref key, ref value),
};

union_inst(val) := {
 [ffi] method [val] __initset__(ref key, ref value),
};

[ffi] subr [struct_inst] struct();
[ffi] subr [packed_inst] packed();
[ffi] subr [union_inst] union();

The putc() function can be used to append a byte whose integer value is specified by c , to the end of

the string; the puts() function can be used to append another string to the end; both putc() and

puts() may buffer the input on the working context of the string, such buffer need to be flushed using

the putfin() function before the string is used in other places.

172

For trunc() , putc() , puts() , and putfin() , the object itself is returned on success, and

null is returned on failure.

173

The cmpwith() returns less than, equal to, or greater than 0 if the string is less than, the same as, or

greater than s2 . The strict prefix of a string is less than the string to which it's a prefix of.

174

The equals() function returns true if the string equals s2 and false otherwise. If the 2 strings are
of the same length, it is guaranteed that the comparison is done without cryptographically exploitable time
side-channel.

175

The map() function creates an object that is a parsed representation of the underlying data structure.
This object can be used to modify the memory backing of the data structure if the corresponding memory
backing is writable. The memory backing is writable by default, and the circumstances under which it's
not is implementation-defined.

176

The unmap() function unmaps the parsed representation, thus making it no longer usable. The variable

can then only be finalized (or overwritten, which would imply a finalization). The trunc() function
cannot be called on the string unless there's no active mapping of the string.

177

The representations for char , byte , short , ushort , int , uint , long , ulong , half ,

float , and double are explained in the comments following their description; their alignments are
the same as their size. These are known as primitive types.

178

38 Library for the Describing Data Structure Layout

decl AesBlock = union() { 'b': byte[16], 'w': uint[4] };
decl Aes128Key = AesBlock[11];

16. Type Reflection
[ffi] subr [bool] isnull(val x);
[ffi] subr [bool] islong(val x);
[ffi] subr [bool] isulong(val x);
[ffi] subr [bool] isdouble(val x);
[ffi] subr [bool] isobj(val x, val proto);

17. Library for Floating Point Environment

Rounding Mode

[ffi] subr [long] fpmode(long mode);

0: round ties to even,

3: round towards positive,

5: round towards negative,

7: round towards zero.

A struct_inst object represents an instance of structure that is suitabl for use in a call to the map()

method of the str type, representing a structure with members laid out sequentially and suitably align.

A packed_inst is similar, but with no alignment - all members are packed back-to-back. A

union_inst creates a structure layout object with all members having the same start address at byte 0
and alignment of the strictestly-align member.

179

Each object of type struct_inst , packed_inst , and union_inst are type objects. They're
initialized with members using the syntax as described in 10. Type Definition and Object Initialization
Syntax; and are created using the struct() , packed() , and union() factory functions
respectively.

180

Primitive types and structure layout object may be array-accessed to create array types of respective types.181

For example:182

The variable AesBlock holds a structure layout object of 128 bits, and Aes128Key holds the 11
round keys for an AES-128 cipher.

183

The functions isnull , islong , isulong , isdouble , determines whether the value is the special

value null , of type long , type ulong , or type double respectively. The function isobj

determines whether the value is an object, if proto is not null , then it further determines whether the

__proto__ member of the object is equal to proto .

184

Tentative Note: The exact form of the following functionality is not yet ultimately decided, and may
change over time.

185

Returns the currently active rounding mode. If mode is one of the supported mode, then set the current
rounding mode to the specified mode. The value -1 is guaranteed to not be any supported mode.

186

The following modes are supported:187

•

•

•

•

Type Reflection 39

0: nearest - rounding to nearest, and defer to next bits only on ties.

1: directed - always make decision based on next bits.

0<<1: even - the value with an even least significant digit is chosen,

1<<1: positive - the greater value is chosen.

2<<1: negative - the lesser value is chosen,

3<<1: zero - the value with lesser magnitude is chosen,

4<<1: away - the value with greater magnitude is chosen,

5<<1: odd - the value with an odd least significant digit is chosen.

Floating Point Exceptions

// Tests for exceptions
[ffi] subr [bool] fptestinval(); // **invalid**
[ffi] subr [bool] fptestpole(); // **division-by-zero**
[ffi] subr [bool] fptestoverf(); // **overflow**
[ffi] subr [bool] fptestunderf(); // **underflow**
[ffi] subr [bool] fptestinexact(); // **inexact**

// Clears exceptions
[ffi] subr [bool] fpclearinval(); // **invalid**
[ffi] subr [bool] fpclearpole(); // **division-by-zero**
[ffi] subr [bool] fpclearoverf(); // **overflow**
[ffi] subr [bool] fpclearunderf(); // **underflow**
[ffi] subr [bool] fpclearinexact(); // **inexact**

// Sets exceptions
[ffi] subr [bool] fpsetinval(); // **invalid**
[ffi] subr [bool] fpsetpole(); // **division-by-zero**
[ffi] subr [bool] fpsetoverf(); // **overflow**
[ffi] subr [bool] fpsetunderf(); // **underflow**
[ffi] subr [bool] fpsetinexact(); // **inexact**

// Exceptions state.
[ffi] subr [long] fpexcepts(long excepts);

The support for other modes are unspecified.188

The encoding of modes are as follow:189

•

•

The next bits are as follow:190

•

•

•

•

•

•

Such encoding is chosen to cater to possible future extensions. Not all possible rounding modes offer
numerical analysis merit, as such some of the combinations are not valid on some implementations.

191

Tentative Note: The exact form of the following functionality is not yet ultimately decided, and may
change over time.

192

The fptest* , fpclear* , and fpset* functions tests, clears, and sets the corresponding floating
point exceptions in the current thread.

193

The fpexcepts function returns the current exceptions flags. If excepts is a valid flag, then the
exceptions flag in the current thread will be set, otherwise, it will not be set. The value 0 is guaranteed to
be a valid flag meaning all exceptions are clear; the value -1 is guaranteed to be an invalid flag. The
validity of other flag values are UNSPECIFIED. When the implementation is being hosted by a C
implementation, the encoding of excepts is exactly that of FE_* macros, with the clear intention to
minimize unecessary duplicate enumerations as much as possible.

194

40 Library for Floating Point Environment

18. Library for Input and Output

19. Library for Multi-Threading

19.1. Exclusive and Sharable Objects and Mutices (Mutex)

sharableObj(val) := { /* Sharable objects may be used across threads */ }
mutex_inst(sharableObj) := { /* Mutices are a class of sharable objects */ }

[ffi] subr [mutex_inst] mutex(val v);

mutex_inst(val) := {
 [ffi] method [exclusiveObj] acquire(),
}

exclusiveObj(val) := {
 // Exclusive objects can only be used by 1 thread at a time,
 // but is more efficient than shared objects when used.
 [ffi] method [val] __copy__(),
 [ffi] method [null] __final__(),
}

Planning: Postponed.195

The mutex() function creates a mutex which is a sharable object that can be used across threads. The

argument v will be an exclusive object protected by the mutex.

196

The acquire() method of a mutex returns a value native object representing v - when the function
returns, it is guaranteed that the thread in which it returns is the only thread holding the value protected by
the mutex, and that until the value goes out of scope, no other thread may simultaneously use the value.

197

The __copy__() and __final__() properties increments and decrements respectively, a conceptual

counter - this counter is initially set to 1 by acquire() and any future functions that may be defined
fulfilling similar role; when it reaches 0, the mutex is 'unlocked', allowing other threads to acquire the
value for use.

198

Note: A typical implementation of acquire() may lock a mutex, sets the conceptual counter to 1,

creates and returns a value native object. A typical implementation of the __copy__() method may be

as simple as just incrementing the conceptual counter. A typical implementation of the __final__()
method may decrement the counter, and when it reaches 0, unlocks the mutex.

199

Note: The conceptual counter is distinct from the reference count of any potential resources used by the
value protected by the mutex and the mutex itself.

200

-- TODO --: Thread management need to cater to the type system of cxing, C/POSIX API have thread
entry points take a pointer, but cxingdon't expose pointers. This along with other issues are to be addressed
before the threading library is formalized. The part with mutex is roughly okay now.

201

Library for Input and Output 41

42 Library for Multi-Threading

Annex A. Identifier Namespace

Pascal Case: where each word, including the first, are capitalized,

Camel Case: where each word except the first are capitalized,

Snake Case: underscore-concatentated lowercase words,

Verbose Case: underscore-concatenated Pascal case.

A.1. Reserved Identifiers

A.2. Conventions for Identifiers

For type objects, Pascal or Verbose case is recommended.

For subroutines, Snake or Verbose case is recommended.

For members and methods, Camel or Pascal case is recommended.

The goal of this section is to avoid ambiguity of identifiers in the global namespace - i.e. avoiding the
same identifier with conflicting meanings.

202

To this end, "commonly-used" refers to the attribute of an entity where it's used so frequently that having a
verbose spelling would hamper the readability of the code.

203

When an identifier consist of multiplie words, the following terms are defined:204

•

•

•

•

Identifiers in the global namespace that begins with an underscore, followed by an uppercase letter is
reserved for standardization by the language.

205

Identifiers which consist of less than 10 lowercase letters or digits are potentially reserved for
standardization by the language, as keywords or as "commonly-used" library functions or objects.
Although the use of the word "potentially" signifies that the reservation is not uncompromising, 3rd-party
library vendors should nontheless refrain from defining such terse identifiers in the global namespace.

206

•

•

•

Identifier Namespace 43

	Request For Comment on Draft Specification for The CXING Programming Language.
	The cxing Programming Language
	Introduction
	Goal
	Naming
	License

	Features
	Memory and Thread Safety
	Null safety.
	Nullish NaNs

	Lexical Elements.
	Comments
	Identifiers and Keywords
	Numbers
	Characters and Strings
	Punctuations

	Expressions
	Grouping, Postifix, and Unaries.
	Arithmetic Binary Operations
	Bit Shifting Operations
	Arithmetic Relations
	Bitwise Operations
	Boolean Logics
	Compounds

	Phrases
	Statements
	Condition Statements
	Loops
	Statements List
	Declarations

	Functions
	Translation Unit Interface
	Translation Unit Source Code Syntax
	Source Code Inclusion

	Language Semantics
	Objects and Values
	Object/Value Key Access
	Subroutines and Methods
	The val and ref Function Operand Interfaces

	Types and Special Values
	The long and ulong types
	The double type
	The str type
	The true and false special values
	The null and NaN special values
	Implicit Type and Value Conversion

	Type Definition and Object Initialization Syntax
	Numerics and Maths
	Rounding
	Exceptional Conditions
	Reproducibility and Robustness
	Recommended Applications of Floating Points

	Runtime Semantics
	Binary Linking Compatibility
	Calling Conventions and Foreign Function Interface
	Finalization and Garbage Collection

	Standard Library
	Library for the String Data Type
	Library for the Describing Data Structure Layout
	Type Reflection
	Library for Floating Point Environment
	Rounding Mode
	Floating Point Exceptions

	Library for Input and Output
	Library for Multi-Threading
	Exclusive and Sharable Objects and Mutices (Mutex)

	Identifier Namespace
	Reserved Identifiers
	Conventions for Identifiers

